CONSTRUCTION AND DEMOLITION WASTE LANDFILLS #### **Prepared for** U.S. Environmental Protection Agency Office of Solid Waste by ICF Incorporated Contract No. 68-W3-0008 February 1995 #### TABLE OF CONTENTS | EXECUTIVE SUMMARY | ES- 1 | |--|---| | BACKGROUND COMPOSITION OF C&D WASTE C&D LANDFILL LEACHATE QUALITY STATE REGULATIONS | ES-1
ES-2 | | CHAPTER 1. INTRODUCTION | 1-1 | | REGULATORY BACKGROUND | 1-1 | | CHAPTER 2. CHARACTERISTICS OF CONSTRUCTION AND DEMOLITION WASTES | 2-1 | | FACTORS THAT INFLUENCE C&D WASTE COMPOSITION COMPONENTS OF C&D WASTE COMPONENTS OF C&D WASTE THAT ARE POTENTIALLY "PROBLEMATIC" SUMMARY REFERENCES | 2-2
2-4
2-12 | | CHAPTER 3. LEACHATE QUALITY ANALYSIS | 3-1 | | METHODOLOGY RESULTS SUMMARY CAVEATS AND LIMITATIONS REFERENCES ATTACHMENT 3-A. OTHER STUDIES OF C&D LANDFILL LEACHATE ATTACHMENT 3-B. C&D LANDFILL LEACHATE DATABASE | 3-4
3-10
3-12
3-13 | | CHAPTER 4. STATE REGULATORY REQUIREMENTS FOR CONSTRUCTION AND DEMOLITION LANDFILLS | 4-1 | | OVERVIEW OF STATE REGULATORY SCHEMES FOR C&D LANDFILLS LOCATION STANDARDS GROUND-WATER MONITORING REQUIREMENTS CORRECTIVE ACTION REQUIREMENTS OTHER STATE REQUIREMENTS ATTACHMENT 4-A. STATE REGULATORY CLASSIFICATION SCHEME FOR C&D LAND ATTACHMENT 4-B. STATE GROUND-WATER MONITORING REQUIREMENTS ATTACHMENT 4-C. STATE LINER REQUIREMENTS | 4-3
4-4
4-8
4-9
PFILL \$ -12
4-15
4-26 | | ATTACHMENT 4-D. CLASSIFICATION OF STATE WASTE RESTRICTIONS | 4-28 | #### EXECUTIVE SUMMARY The U.S. Environmental Protection Agency (EPA) is currently developing a rule addressing non-municipal facilities (industrial waste facilities, including construction and demolition waste landfills) that may receive hazardous wastes from conditionally exempt small quantity generators (CESQGs), or generators of less than 100 kilograms per month of hazardous waste. This report, prepared in support of EPA's rulemaking, presents information on construction and demolition (C&D) waste landfills, i.e., landfills that receive materials generated from the construction or destruction of structures such as buildings, roads, and bridges. C&D waste landfills are being examined because the Agency believes that the largest potential impact from this rulemaking will be on these facilities. #### BACKGROUND The 1984 Hazardous and Solid Waste Amendments (HSWA) to the Resource Conservation and Recovery Act (RCRA) required EPA to revise the existing standards and guidelines governing the management of household hazardous wastes and hazardous wastes from small quantity generators. EPA responded in 1991 by revising the existing criteria for solid waste disposal facilities and practices (40 CFR Part 257). In 1991 EPA issued revised criteria in 40 CFR Part 258 for municipal solid waste landfills (MSWLFs) that receive household hazardous wastes and CESQG wastes. EPA did not establish revised criteria for non-municipal facilities and subsequently was sued by the Sierra Club. A consent agreement was reached in January 1994, and EPA is now fulfilling the remainder of the HSWA mandate by regulating non-municipal facilities that may receive CESQG wastes. The final rule must be signed by the EPA Administrator by May 15, 1995. The rule will require facilities receiving CESQG wastes to have adequate ground-water monitoring, corrective action requirements, and location restrictions. #### COMPOSITION OF C&D WASTE Information on the composition of C&D waste is presented below. Most of this information was compiled from the literature by the National Association of Demolition Contractors (NADC); a small number of other readily available sources were used as well. These source documents provide only snapshots of the C&D waste stream in specific locations and at specific points (e.g., generation) rather than providing a complete cradle-to-grave picture of C&D wastes nationwide, or of the portion landfilled. C&D waste is generated from the construction, renovation, repair, and demolition of structures such as residential and commercial buildings, roads, and bridges. The composition of C&D waste varies for these different activities and structures. Overall, C&D waste is composed mainly of wood products, asphalt, drywall, and masonry; other components often present in significant quantities include metals, plastics, earth, shingles, insulation, and paper and cardboard. C&D debris also contains wastes that may be hazardous. The source documents identify a number of wastes that are referred to using such terms as "hazardous," "excluded," "unacceptable," "problem," "potentially toxic," or "illegal." It is not necessarily true that all of these wastes meet the definition of "hazardous" under Subtitle C of RCRA, but they provide an indication of the types of hazardous wastes that may be present in the C&D waste stream. They can be divided into four categories: - Excess materials used in construction, and their containers. *Examples: adhesives and adhesive containers, leftover paint and paint containers, excess roofing cement and roofing cement cans;* - Waste oils, grease, and fluids. Examples: machinery lubricants, brake fluid, form oil, engine oil; - Other discrete items. Examples: batteries, fluorescent bulbs, appliances; and - Inseparable constituents of bulk items. Examples: formaldehyde present in carpet, treated or coated wood. Some of these components are excluded from C&D landfills by state regulations. #### C&D LANDFILL LEACHATE QUALITY Construction and demolition landfill leachate sampling data were collected from states and from the general literature by NADC. Leachate sampling data for 305 parameters sampled for at one or more of 21 C&D landfills were compiled into a database. Of the 305 parameters sampled for, 93 were detected at least once. The highest detected concentrations of these parameters were compared to regulatory or health-based "benchmarks," or concern levels, identified for each parameter. Safe Drinking Water Act Maximum Contaminant Levels (MCLs) or Secondary Maximum Contaminant Levels (SMCLs) were used as the benchmarks if available. Otherwise, health-based benchmarks for a leachate ingestion scenario were identified; these were either reference doses (RfDs) for non-carcinogens, or 10⁻⁶ risk-specific doses (RSDs) for carcinogens. Benchmarks were unavailable for many parameters because they have not been studied sufficiently. Of the 93 parameters detected in C&D landfill leachate, 24 had at least one measured value above the regulatory or health-based benchmark. For each of the parameters exceeding benchmarks (except pH), the median leachate concentration was calculated and compared to its benchmark. The median value was first calculated among the samples taken at each landfill, and then across all landfills at which the parameter was detected. Due to anomalies and inconsistencies among the sampling equipment used at different times and at different landfills, non-detects were not considered in determining median values; i.e., the non-detects were discarded before calculating both individual landfill concentration medians and medians across landfills. Thus, the median leachate concentrations represent the median among the detected values, rather than the median among all values. The median concentration among all values would in most cases have been lower than those calculated here. Based on (1) the number of landfills at which the benchmark was exceeded and (2) a comparison between the median detected concentration and the benchmark, seven constituents emerge as being potentially problematic. They are listed in the table below. Also shown are the number of landfills at which the constituent was sampled, the | C&D LANDFILL LEACHATE - POTENTIALLY PROBLEMATIC CONSTITUENTS | | | | | | |--|--------------------------|---------------------------|------------------------------|------------------------------------|--| | Constituent | No. Landfills
Sampled | No. Landfills
Detected | No. Landfills >
Benchmark | Ratio of
Median to
Benchmark | | | 1,2-Dichloroethane | 9 | 3 | 3 | 4 | | | Methylene chloride | 9 | 4 | 3 | 3 | | | Cadmium | 19 | 14 | 12 | 2 | | | Iron | 20 | 20 | 19 | 37 | | | Lead | 18 | 15 | 13 | 4 | | | Manganese | 14 | 14 | 13 | 59 | | | Total dissolved solids | 18 | 17 | 15 | 4 | | ¹In the case of pH, the "exceedances" were actually pH values <u>below</u> the regulatory range. number of landfills at which the constituent was detected, the number of landfills at which the constituent was detected above its benchmark, and the ratio of the median detected concentration to the benchmark. For three of the seven parameters listed in the table (iron, manganese, and TDS), the benchmarks are secondary MCLs (SMCLs), which are set to protect water supplies for aesthetic reasons (e.g., taste) rather than for health-based reasons. None of the remaining four parameters exceeds its benchmark by a factor of 10 or more, indicating that concentrations in ground water where monitoring wells or drinking water wells may be located are likely to fall below the health-based benchmarks. Conclusions regarding C&D landfill leachate quality must be viewed with an understanding of the data limitations. The most important limitation is that the 21 landfills represented in this report comprise just over one percent of the approximately 1,800 C&D landfills in the United States. Thus, the representativeness of the sample is questionable. Other limitations are discussed in the body of the report. #### STATE REGULATIONS
State statutes and regulations for C&D landfills were summarized, and similarities and differences between current state requirements for C&D landfills and federal requirements for MSWLFs were evaluated. The following summarizes the key findings: - All states regulate off-site C&D landfills to some extent. Thirteen states require off-site C&D landfills to meet state MSWLF requirements (in many states, these requirements are not as stringent as the federal MSWLF requirements found in 40 CFR Part 258), while the remaining 37 have developed separate regulations that are specific to off-site C&D landfills.² - Only seven states exempt on-site C&D landfills from regulatory requirements. Of the remaining 43 states, 11 require on-site C&D landfills to meet state sanitary landfill requirements (in many states, these requirements are not as stringent as 40 CFR Part 258), 8 have developed separate regulations applicable to only on-site landfills, and the remaining 24 have extended the regulations for off-site landfills to on-site landfills. - Sixteen states mandate location restrictions, ground-water monitoring, and corrective action for off-site C&D landfills. These requirements, however, vary in stringency relative to 40 CFR Part 258. For example, only two states have location restrictions, ground-water monitoring, and corrective action requirements for off-site C&D landfills that are at least as stringent as 40 CFR Part 258. - The most common 40 CFR Part 258 location restrictions that states apply to C&D landfills relate to: airports and bird hazards, wetlands, and floodplains. Several states have moved beyond federal requirements and prohibit the siting of on-site (eight states) and off-site (nine states) C&D landfills in floodplains. Fewer states have adopted the 40 CFR Part 258 requirements regarding faults, seismic zones, and unstable areas. - A majority of states impose additional location restrictions on C&D landfills. The most common additional restrictions are: near ground and surface waters, and near endangered species habitats. - Twenty-nine states (nearly 60 percent) require off-site C&D landfills to monitor ground water. Of these 29 states, 5 have requirements substantially similar to 40 CFR Part 258, while 24 ²Ohio expects to have specific C&D management requirements effective by the end of 1995. have requirements that are less stringent.³ **The remaining 21 states do not require ground-water monitoring requirements.** Of these 21, however, 12 "may" require ground-water monitoring if the regulatory authority deems it necessary. - Twenty-four states (nearly 50 percent) require on-site C&D landfills to monitor ground water. Of these 24, only 4 have requirements substantially similar to 40 CFR Part 258, while 20 have requirements that are less stringent. The remaining 26 states do not require ground-water monitoring. Of these 26, 9 states "may" require ground-water monitoring if the regulatory authority deems it necessary. - Twenty-two states have corrective action requirements for off-site C&D landfills. These states either require the permit applicant to submit a corrective action plan with the permit application, or require the facility owner/operator to submit a plan after a release to ground water is detected. - Sixteen states have corrective action requirements for on-site C&D landfills. Again, these states either require the permit applicant to submit a corrective action plan with the permit application, or require the facility owner/operator to submit a plan after a release to ground water is detected. - States also have mandated permit, design and operating, post-closure, and financial assurance requirements for both on-site and off-site C&D landfills. The most common of these is permitting requirements. Respectively, 45 and 38 states require off-site and on-site C&D landfills to obtain a permit.⁴ Thirty-four states require some post-closure time period for off-site landfills (11 require at least 30 years and 23 require less than 30 years). Additionally, 33 states require off-site C&D landfills to obtain financial assurance for closure, while 32 require it for post-closure care. - Twenty-four states prohibit <u>all</u> hazardous wastes from disposal at off-site C&D landfills. In addition, three and four states require that only inert waste and C&D waste be disposed, respectively. Fourteen states do not specifically prohibit disposal of all hazardous wastes at off-site C&D landfills. In general, the regulations for these states note that only waste specified in permit may be accepted, or only "regulated" or "controlled" hazardous waste is prohibited. Finally, five states do not specifically identify any restrictions on waste disposal at off-site C&D landfills. ³Ohio currently does not have ground-water monitoring, but monitoring is expected to be part of C&D management regulations that should be finalized by the end of 1995. ⁴Ohio requires a permit for C&D landfills. #### CHAPTER 1 INTRODUCTION This report presents information on construction and demolition (C&D) waste landfills. These are landfills that receive materials generated predominantly from the construction or destruction of structures such as buildings, roads, and bridges. There are currently over 1,800 C&D waste landfills operating in the United States. This report was written in support of a rulemaking currently being developed by the U.S. Environmental Protection Agency (EPA). This chapter provides a background discussion of this rulemaking, and then discusses the purpose and organization of this report. #### REGULATORY BACKGROUND The Resource Conservation and Recovery Act (RCRA), passed in 1976, required the Environmental Protection Agency (EPA) to promulgate standards and guidelines for the management of solid wastes. In response to this mandate, EPA promulgated regulations for the management of hazardous wastes under Subtitle C of RCRA, and for non-hazardous wastes under Subtitle D. The Subtitle C standards applied to all facilities generating more than 1,000 kg/mo of hazardous wastes, but conditionally exempted from full regulation facilities generating less than this amount. Subtitle D guidelines address the management of all other solid wastes, such as municipal wastes and non-hazardous industrial wastes (including construction and demolition wastes). In 1984, Congress passed the Hazardous and Solid Waste Amendments (HSWA), which made several changes to RCRA. One important change was the creation of two categories of small quantity hazardous waste generators: generators of 100 to 1,000 kg/mo, and generators of less than 100 kg/mo. HSWA added specific provisions for the first category, but gave EPA discretion as to whether to promulgate new requirements for the second. EPA has since defined generators of less than 100 kg/mo as conditionally-exempt small quantity generators, or CESQGs. CESQGs are responsible for the proper management of their wastes, but are not required to comply with many of the Subtitle C regulations specified for larger hazardous waste generators. Another important change imposed by HSWA was the addition of Section 4010 to Subtitle D, requiring EPA to promulgate revised criteria addressing the management of household hazardous wastes and hazardous wastes from small quantity generators. EPA responded in October 1991 by promulgating the revised Municipal Solid Waste Landfill (MSWLF) Criteria (40 CFR Part 258). This partially fulfilled the HSWA mandate by addressing household hazardous wastes and CESQG wastes that are disposed in MSWLFs. After a consent agreement with the Sierra Club on January 28, 1994, EPA is now fulfilling the remainder of the HSWA mandate by regulating CESQG wastes that are disposed in non-municipal facilities. The final rule must be signed by the EPA Administrator by May 15, 1995. The rule will require non-municipal facilities receiving CESQG wastes to have adequate ground-water monitoring, corrective action requirements, and location restrictions. #### FOCUS ON C&D LANDFILLS CESQGs currently send their wastes to many different types of Subtitle D waste management units other than MSWLFs, including the following: - Commercial Subtitle D industrial waste landfills; - On-site Subtitle D industrial waste management units such as landfills, surface impoundments, land treatment units, and waste piles; and - C&D waste landfills. EPA believes that the only waste management units that may be impacted significantly by this rulemaking are the C&D landfills. The Agency believes that most of the 10 to 20 commercial Subtitle D industrial waste landfills in existence today already have adequate ground-water monitoring, corrective action requirements, and location restrictions. EPA also believes that CESQGs currently disposing of their wastes in on-site Subtitle D waste management units will simply start sending the hazardous portion of their waste stream off site, at relatively low cost. On the other hand, the rulemaking will have an impact on C&D landfills. C&D landfills are therefore the focus of this report. #### SCOPE AND ORGANIZATION OF THIS REPORT This report examines C&D waste characteristics, C&D landfill leachate quality, and state regulations addressing C&D waste management facilities. - Chapter 2 discusses the composition of C&D wastes, including any hazardous materials or constituents that are found; - Chapter 3 presents information on the quality of C&D landfill leachate, based on sampling data taken from landfills around the country; and - Chapter 4 presents a detailed summary of state regulations pertaining to C&D facilities. It identifies states that have regulations related to ground-water monitoring; corrective action; location restrictions; and facility design, operation, closure, and/or post closure care; and provides the specifics of those requirements. The first two chapters are based predominantly on information supplied to EPA by the National Association of Demolition Contractors
(NADC), supplemented with a small number of other readily available studies. The chapter on state regulations is based on original research performed for this report. ### CHAPTER 2 CHARACTERISTICS OF CONSTRUCTION AND DEMOLITION WASTES This chapter presents information on the composition and characteristics of the C&D waste stream based on four source documents: - The National Association of Demolition Contractors's (NADC's) *C&D Waste Characterization Database: Volume 1 Compilation of Report Excerpts* (1994); - NADC's *C&D* Waste Characterization Database: Volume 1 Compilation of Articles (1994); - Hanrahan's Construction and Demolition Debris Disposal Issues: An Alachua County Perspective (1994); and - Lambert and Domizio's Construction and Demolition Waste Disposal: Management Problems and Alternative Solutions (1993). The source documents provide only snapshots of the C&D waste stream in specific locations (e.g., Vermont) and at specific points (e.g., at generation) rather than providing a complete cradle-to-grave picture of the nationwide C&D waste stream, or of the portion that is landfilled. This report reflects that segmented characterization of the waste stream and includes waste characterization information based on generated wastes. In some areas, a large portion of the complete C&D waste stream may be recycled, burned, left on site, or illegally disposed (Apotheker, 1990; Piasecki et al., 1990; Spencer, 1991; Lambert and Domizio, 1993; McGregor et al., 1993); thus, the characterizations presented in this report may be somewhat different from those of the landfilled portion of the waste stream. In Vermont, for example, only about one-third of the waste stream went to landfills in 1989 (Spencer, 1991). The first section of this chapter discusses factors that influence C&D waste composition and characteristics. The second section provides information on components and their proportions in the C&D waste stream. The final section focuses specifically on the components and constituents of C&D waste that the source documents characterize using the terms "hazardous," "excluded," "contaminants," "chemical constituents that could affect the use of the waste as fuel," "special," "unacceptable," "problem," "potentially toxic," "nonhazardous restrictive," or "illegal." Throughout this chapter these components are referred to as "problematic." These "problematic" wastes are **not** necessarily wastes that are classified as hazardous under RCRA Subtitle C. #### FACTORS THAT INFLUENCE C&D WASTE COMPOSITION C&D wastes are categorized in a variety of ways, and each category produces wastes with different composition and characteristics. For example, road C&D waste differs from bridge waste, which differs from building waste. Whereas road C&D generates large quantities of just a few different waste items (mainly asphalt and concrete), building C&D generates many different waste items in smaller amounts (with wood as the largest single item). Within the category of building C&D waste, the size and type of the building (e.g., an apartment building versus a single-family house) affects the composition of the waste. Even for one building type (e.g., a single-family house), the waste generated depends on the activity conducted (i.e., new construction, renovation, or demolition). For example, construction generally produces "clean," unaltered, and separate waste items (e.g., unpainted wood, new concrete) (MVC, 1992). In contrast, demolition wastes may include more items that have been altered or mixed (e.g., wood painted with lead-based paint, concrete with hazardous waste spilled on it) (MVC, 1992). Thus, three main factors affect the characteristics of C&D waste (MVC, 1992): - Structure type (e.g., residential, commercial, or industrial building, road, bridge); - Structure size (e.g., low-rise, high-rise); and - Activity being performed (e.g., construction, renovation, repair, demolition). Additional factors that influence the type and quantity of C&D waste produced include (MVC, 1992; McGregor et al., 1993): - Size of the project as a whole (e.g., custom-built residence versus tract housing); - Location of the project (e.g., waterfront versus inland, rural versus urban); - Materials used in construction (e.g., brick versus wood); - Demolition practices (e.g., manual versus mechanical); - Schedule (e.g., rushed versus paced); and - Contractors' "housekeeping" practices. Other factors do not affect the type and quantity of C&D waste **produced**, but do affect the type and quantity **reported** in the source documents and therefore in this report. These include: - How state regulations define what is and is not acceptable as C&D waste; - Where in the waste stream the C&D waste is measured (e.g., generation point, recycling station, landfill); and - How the C&D waste is measured (e.g., by volume or weight). The next section provides information on the components of C&D waste and their proportions in the waste stream. #### COMPONENTS OF C&D WASTE Overall, C&D waste streams are comprised mainly of wood products, asphalt, drywall (gypsum)⁵, and masonry (e.g., concrete, bricks). Other notable components include metals, plastics, earth, shingles, and insulation. In one county, waste identified by the source document as "hazardous" has been estimated to comprise 0.4 percent of construction waste by weight (Triangle J Council of Governments, 1993)⁶; this is discussed further in the final section of this chapter. Table 2-1 provides a complete list of components of C&D wastes mentioned in the source documents. The bold print denotes the "problematic" components, i.e., components that the source documents refer to as "hazardous," "excluded," "contaminants," "chemical constituents that could affect the use of the waste as fuel," "special," "unacceptable," "problem," "potentially toxic," "nonhazardous restrictive," or "illegal." In general, wood comprises one-quarter to one-third of the C&D waste stream. Other generalizations are hard to make because (1) different studies address different segments of the nation's ⁵ Drywall is excluded from some C&D landfills because anaerobic breakdown of gypsum produces hydrogen sulfide. Hazardous waste percentage estimate is for the 1990 Orange County, North Carolina construction waste stream (SCS Engineers, 1991 as cited in Triangle J Council of Governments, 1993). #### TABLE 2-1 COMPONENTS OF C&D WASTE | ASPHALT paving shingles | PAINT paint containers and waste paint products | WALL COVERINGS drywall (gypsum) plaster | |---|---|--| | EARTH dirt sand, foundry soil | PAPER PRODUCTS cardboard fiberboard, paperboard paper | wood cabinets composites millends pallets, shipping skids, and crating lumber particle board plywood siding trees: limbs, brush, stumps, and tops veneer | | ELECTRICAL fixtures wiring | PETROLEUM PRODUCTS brake fluid form oil fuel tanks oil filters petroleum distillates waste oils and greases | WOOD CONTAMINANTS adhesives and resins laminates paintings and coatings preservatives stains/varnishes other chemical additives | | INSULATION asbestos building extruded polystyrene (rigid) fiberglass (bat) roofing | PLASTICS buckets pipe (PVC) polyethylene sheets styrofoam sheeting or bags laminate | MISCELLANEOUS adhesives and adhesive cansaerosol cans air conditioning units appliances ("white goods") batteries carpeting | | MASONRY AND RUBBLE bricks cinder blocks concrete mortar, excess porcelain rock stone tile | ROOF MATERIALS asbestos shingles roofing, built up roofing cement cans roofing shingles roofing tar tar paper | caulk (tubes) ceiling tiles driveway sealants (buckets) epoxy containers fiberglass fines fireproofing products (overspray) floor tiles furniture garbage | | METAL aluminum (cans, ducts, siding) brass fixtures, plumbing flashing gutters mercury from electrical switches iron lead nails pipe (steel, copper) sheet metal steel (structural, banding, decking, rerod) studs, metal wire (e.g., copper) | VINYL siding flooring doors windows | glass lacquer thinners leather light bulbs, fluorescent and HID light bulbs, other linoleum organic material packaging, foam pesticide containers rubber sealers and sealer tubes sheathing silicon containers solvent containers and waste street sweepings textiles thermostat switches tires transformers water treatment plant lime sludge | Source: Summarized from NADC, 1994a and 1994b; Hanrahan, 1994; and Lambert and Domizio, 1993. C&D waste stream (e.g., road and bridge waste may be excluded from some studies; information in another study may be for waste from construction only or demolition only) and (2) C&D waste composition varies greatly from one category to another. The graphs and tables in this section provide examples of the composition of portions of the C&D waste stream. Note that they vary with location (e.g., Florida versus Vermont) and category of waste (e.g., construction versus demolition). Viewed together, they provide a good overall picture of the North American C&D waste stream, and show important differences among different categories of C&D waste. #### **C&D** Waste Including Road and Bridge Waste (Vermont) Figure 2-1 provides a picture of the composition of Vermont's complete C&D waste stream by weight, based on a comprehensive C&D generation study. Asphalt
comprises approximately one-half of the waste stream, wood one-quarter, and concrete one-sixth (Cosper et al., 1993). #### **C&D** Waste Excluding Road and Bridge Waste (Florida) Figure 2-2 provides an example of the composition by volume of the C&D waste stream received at a C&D recycling facility in Florida. Although the source document (Cosper et al., 1993) states that the facility accepts "the complete C/D waste stream," it appears that the facility receives the complete **building** C&D waste stream, but does not receive wood or bridge waste, because asphalt is not listed as a component of the waste. Approximately one-third of the waste volume is wood (Cosper et al., 1993). Drywall comprises one-sixth and paper and cardboard together comprise one-sixth of the total volume (Cosper et al., 1993). #### **Construction-only Waste Versus Demolition-only Waste** Approximately one-third of the construction waste volume in Toronto is wood, and masonry and tile comprise less than one-sixth of the construction waste (Figure 2-3) (THBA, 1991). Demolition waste is also comprised of approximately one-third wood (in the U.S.), but concrete makes up over one-half of demolition waste (Figure 2-4) (Chatterjee-U.S. Army as cited in SPARK, 1991). #### **C&D** Waste by Housing Type Table 2-2 compares residential construction waste to commercial construction waste in the Twin Cities, Minnesota. Wood comprises one-fifth to one-third of the waste stream in both cases. Concrete, brick, and steel waste are greater from commercial construction than from residential, as would be expected. #### COMPONENTS OF C&D WASTE THAT ARE POTENTIALLY "PROBLEMATIC" Hazardous wastes comprise a small percentage of the C&D waste stream (McGregor et al., 1993), and can potentially cause adverse effects to human health and ecosystems (Lambert and Domizio, 1993). For example, inhalation of urea formaldehyde (a resin used in insulation and as a wood preservative) has caused a health syndrome called "ultra-sensitive allergies" in demolition workers (Lambert and Domizio, 1993). Creosote (a wood preservative) can potentially leach into ground water and discharge into surface water, possibly adversely affecting drinking water or aquatic life if concentrations reach high enough levels (Lambert and Domizio, 1993). This section describes the "problematic" components and constituents of C&D waste and, where information was available (i.e., for treated and coated wood), the proportion of those constituents in the #### FIGURE 2-1 COMPOSITION OF C&D WASTE STREAM IN VERMONT (BY WEIGHT; 1989 DATA) (Source: C.T. Donovan Associates, 1990) $FIGURE\ 2-2 \\ COMPOSITION\ OF\ THE\ BUILDING\ C\&D\ WASTE\ STREAM\ IN\ FLORIDA\ (BY\ VOLUME) \\$ (Source: Wood, 1992 as cited in Cosper et al., 1993) | Wood | | Paper & Cardboard | Concrete & Brick | Plastics | |------------|---------------|-------------------|------------------|-------------------| | Metals | a | Shingles | Earth | Drywall & Plaster | | Insulation | ; 2 ;2 | Carpet Remnants | Other | | ### FIGURE 2-3 COMPOSITION OF CONSTRUCTION WASTE IN TORONTO (BY VOLUME) (Source: THBA, 1991) #### FIGURE 2-4 COMPOSITION OF U.S. DEMOLITION WASTE (Source: Chatterjee-U.S. Army, as cited in SPARK, 1991) TABLE 2-2 COMPOSITION OF CONSTRUCTION WASTE BY CONSTRUCTION TYPE IN THE TWIN CITIES IN MINNESOTA (BY VOLUME) (Source: Lauer, 1993) | Waste Type | Residential Construction | Commercial
Construction | |--|--------------------------|----------------------------| | Wood | 20-35% | 20-30% | | Crates & pallets | | 1-5% | | Cardboard | 5-15% | 5-10% | | Paper packaging | <1% | ~3% | | Concrete & block | 1-8% | 10-20% | | Brick | | 1-5% | | Drywall | 10-20% | 5-10% | | Electrical wire | <1% | ~2% | | Shingles | 1-8% | | | Fiberboard | 1-8% | | | Steel | <1% | 1-8% | | Plastic sheeting and bags | <1% | ~3% | | Polystyrene insulation | | ~3% | | Overspray from fireproofing products | | 0-5% | | Notable other materials (comprising <1% each | h) | | | carpet scrap | <1% | <1% | | solvent containers | | <1% | | epoxy containers | | <1% | | silicone containers | | <1% | | plastic laminate | | <1% | | Possible "problem materials" | | | | driveway sealants | <1% | | | adhesive containers | <1% | <1% | | caulking containers | <1% | <1% | | paint cans (including frozen or damaged) | <1% | <1% | ⁻⁻ Indicates that the waste was not listed under that category. waste item. Table 2-3 lists "problematic" components and constituents of C&D waste. These "problematic" wastes are **not** necessarily wastes that are classified as hazardous under RCRA Subtitle C. Some may be "problematic" simply because they are recyclable (e.g., cardboard) or because they are outside the definition of C&D waste as defined by a particular jurisdiction (e.g., garbage). It is also important to note that wastes that some jurisdictions exclude from C&D landfills or recycling centers are sometimes brought to the C&D disposal areas nonetheless. In some cases these wastes are detected and rejected (Cosper et al., 1993; Lauer, 1993), but in other cases they may not be screened out (Gates et al., 1993), and evidence shows that they are found in C&D landfills (Piasecki et al., 1990). For discussion purposes, the "problematic" C&D wastes are divided into four categories: - Excess hazardous materials used in construction and their containers; - Waste oils and greases and other fluids from machinery; - Other discrete items; and - Incidental constituents that are inseparable from bulk C&D wastes (e.g., wood treatment chemicals). #### **Excess Potentially Hazardous Materials** Construction activities can produce excess "hazardous" materials and "empty" containers containing small quantities of "hazardous" materials. (The source, McGregor et al., 1993, does not define "hazardous," so these wastes may or may not be defined as hazardous under RCRA Subtitle C.) Adhesives and adhesive containers, leftover paint and paint containers, and excess roofing cement and roofing cement cans are a few examples. In some cases construction workers dump leftover paints or solvents on the ground (McGregor et al., 1993). Others may use sawdust, kitty litter, or masking tape to "dry" up empty paint cans and solvent containers (McGregor et al., 1993). "Hazardous" wastes may be disposed of in a dumpster, left at the construction site for a cleanup contractor, self-hauled to a landfill, or returned to the shop? (McGregor et al., 1993). Table 2-4 characterizes the 46 pounds of wastes referred to as "hazardous" from construction of a typical 1,850 square-foot single-family residence in Portland, Oregon. Assuming that the total waste weight produced by construction of some 1,810 square-foot houses in Oregon is typical, the 46 pounds would comprise less than 1 percent by weight of the total construction waste (including recycled waste), and less than 10 percent of the landfilled waste. #### **Machinery Lubricants** Waste oils, greases, and machine fluids are also generated by C&D activities. Examples include brake fluid, form oil, and engine oil (McGregor et al., 1993). Based on a survey of twenty builders and subcontractors in Oregon (many of whom are conditionally-exempt small quantity generators (CESQGs)), some CESQGs want more information on how and where to dispose of small quantities of hazardous wastes (McGregor et al., 1993). ## TABLE 2-3 "PROBLEMATIC" COMPONENTS OF C&D WASTE IDENTIFIED BY THE SOURCE DOCUMENTS | Waste Item | Source | Waste Item | Source | |----------------------------------|-------------------|---|--------------| | CONTAINERS AND EXCESS | | lead solder | 16 | | aerosol cans | 10 | petroleum constituents, leachable from asphalt or roofing tars | 16 | | adhesives | 3,6,10 | sulfate (in gypsum drywall) | 16 | | caulk | 6,8,10 | wood, pressure-treated | 9 | | coatings | 10 | WOOD CONTAMINANTS | | | concrete & concrete products | 10 | Paints and Coatings | | | containers with liquids | 7 | acrylic, acrylic paints | 1,4,13,18 | | driveway sealants | 6 | lead-based paints | 1,4,11,12,14 | | drums and containers | 2 | mercury-based paints | 12,14 | | fuel tanks | 2,11 | pigments in paints containing:
lead, arsenic, or chromium | 4 | | joint compound | 10 | pigments in paints containing:
lead, arsenic, barium,
cadmium, zinc, mercury, or chromium | 16 | | lacquer thinners | 15 | water-based paint | 13 | | paints | 3,6,7,10,11,15 | alkyd | 18 | | pesticides | 15 | alkyd urea | 18 | | resins | 10 | polyvinyl acetate | 18 | | roofing cement | 10 | polyurethane | 18 | | sealers | 10 | polyesters | 18 | | solvents | 10 | nitrocellulose | 18 | | MACHINERY LUBRICANTS & FUEL | | ethyl cellulose | 18 | | brake fluid | 10 | butyrate | 18 | | form oil | 10 | vinyl (PVA/PVC) | 18 | | oils and greases, waste | 10 | epoxy (reaction products of
epichlorohydrin & polyhydric
phenols) | 18 | | oil filters | 15 | melamine | 18 | | INSEPARABLE CONSTITUENTS OF BULL | X ITEMS | polystyrene | 18 | | asbestos | 1,2,3,11,12,14,17 | styrene/butadiene | 18 | | formaldehyde (in carpeting) | 2 | lead | 18 | | lead | 1,3 | stains | 1,4,13 | | lead flashing | 16 | varnishes | 1,4,13 | | WOOD CONTAMINANTS | | Laminates | | | Waste Item | Source | Waste Item | Source | |---|-------------------------------|--|-----------| | Preservatives | | naphthalene | 13,16 | | arsenic & arsenic-containing water-soluble preservatives | 1,4,16 | melamine/paper | 18 | | chromium & chromium-contain-
ing water-soluble preservatives | 1,4,16 | phenol/paper | 18 | | acid copper chromate (ACC) | 18 | polyvinyl chloride | 18 | | copper zinc chloride (CZC) | 18 | polyester | 18 | |
arsenates chromated copper arsenate (CCA) ammoniacal copper arsenate (ACA) ammoniacal copper zinc arsenate copperized chromated zinc arsenate (CuCZA) | 18
13,18
18
18
18 | phenol/melamine/paper | 18 | | copper | 16 | Other Chemical Additives | | | creosote | 1,4,12,14 | ammonia | 18 | | pentachlorophenol | 1,12,14,16 | borates | 18 | | petroleum distillates, ignitable | 12 | phosphates | 18 | | wood preservatives | 10 | polyesters | 18 | | copper naphthenate (in creosote or petroleum) | 18 | sulfates
ammonium sulfate | 18 | | copper-8-quinolinolate | 18 | waxes | 18 | | tributyltin oxide | 18 | OTHER PROBLEMATIC ITEMS | | | Adhesives/Resins | | appliances or "white goods" | 2,3,5 | | formaldehyde | 13,16 | batteries | 5,7,8,15 | | glues | 4 | cardboard | 7 | | phenol-formaldehyde resins | 1,4,13,18 | carpeting | 2,3 | | urea | 13,18 | corrugated container board | 2 | | urea formaldehyde resins | 1,4,18 | CFCs in conditioning systems | 17 | | melamine formaldehyde | 18 | fiberglass | 11 | | resorcinol formaldehyde | 18 | furniture | 2,3,5 | | isocyanates | 18 | garbage | 2,5 | | epoxy | 18 | mercury-containing switches, bulbs | 1,2,15,17 | | polyvinyl acetate | 18 | PCBs in transformers and capacitors | 1,2,3,15 | | casein | 18 | tires | 2,5,7 | | hot melts (containing polyesters,
polyamides, or ethylene vinyl
acetate) | 18 | unrecognizable pulverized or shredded waste components | 2 | TABLE 2-3 (continued) #### NOTES: - (1) Identified as hazardous material found within C&D material (Lambert and Domizio, 1993). - (2) Excluded by NYDEC (Piasecki et al., 1990). - (3) High priority substances that should be excluded (Piasecki et al., 1990). - (4) Construction wood contaminants: chemically contained non-wood materials (Federle, 1992). - (5) Materials unacceptable at Kimmins C&D Recycling Facility (Woods 1992 as cited in Cosper et al., 1993). - (6) Materials that may be considered problem materials (Lauer, 1993). - (7) Problem materials (Gates et al., 1993). - (8) Items detected and rejected (Gates et al., 1993). - (9) Potentially toxic material (O'Brien/Palermini, 1993). - (10) Hazardous wastes generated from new construction (McGregor et al., 1993) - (11) Contaminants in construction waste and demolition debris (Apotheker, 1990) - (12) Potential hazards (per the *Vermont Hazardous Waste Regulations*, a material is defined as hazardous if it is corrosive, toxic, flammable, or reactive) (Spencer, 1991). - (13) C&D wood waste that may contain nonhazardous restrictive materials. In this report "restrictive materials" were defined as nonhazardous material present in some types of C&D waste that may restrict end uses for the waste once it is recycled (Spencer, 1991). - (14) An innocent-looking pile of debris may be illegally laced with these (Woods, 1992). - Wastes that are legally considered hazardous according to state and federal regulations have been observed. Materials of concern that have been observed at C&D sites include the following (Hanrahan, 1994). - (16) Hazardous constituents contained in C&D materials (Hanrahan, 1994). - (17) Special and hazardous wastes (SPARK, 1991). - (18) Chemicals in wood products that may affect their use as fuel (ERL, 1992). TABLE 2-4 "HAZARDOUS" WASTE GENERATED FROM CONSTRUCTION OF A SINGLE-FAMILY RESIDENCE IN PORTLAND, OREGON (Source: McGregor et al. 1993) | Waste Generated | Quantity
(pounds) | Percent of
Hazardous Waste
(by weight) | |------------------------|----------------------|--| | Sealers/caulking tubes | 15 | 33 | | Adhesives | 5 | 11 | | Resins | 1 | 2 | | Joint compound | 10 | 21 | | Aerosol cans | 15 | 33 | | Total | 46 | 100 | #### **Other Discrete Items** Other discrete items may be problematic for a variety of reasons and may be excluded from C&D landfills by state or county regulations. Batteries and fluorescent light bulbs may be excluded because they contain heavy metals (lead and mercury, respectively). Other items, such as cardboard, may be excluded because they are recyclable. As noted above, supposedly "excluded" items are found at C&D landfills, although some items are spotted and rejected during visual inspections (Cosper et al., 1993; Lauer, 1993; Piasecki et al., 1990). #### **Inseparable Constituents of Bulk Items** Many C&D wastes contain inseparable hazardous constituents. Examples include carpeting that can leach formaldehyde and treated or coated wood and wood products. Extensive information is available on wood treatments and coatings and their constituents. Wood products may leach hazardous constituents into ground water or release them into the air during landfill fires. In some states, fire suppression capabilities are not required at C&D landfills, and C&D landfill fires have occurred in a number of states (Connelly et al., 1991 as cited in Hanrahan, 1994). Table 2-5 provides the information available from the source documents on the concentrations of some of the "problematic" constituents found in wood products. The proportion of the chemical constituent to the wood product ranges from less than 10 parts per million (ppm) for pentachlorophenol in pallets and skids, to 20 percent for creosote in railroad ties, utility poles, pilings, and docks. #### **SUMMARY** As noted earlier, this report characterizes segments of the C&D waste stream based on information provided in the source documents. Much information on the waste composition is based on generated C&D wastes, which may differ from the composition of landfilled C&D wastes. Additionally, various factors affect the characteristics of C&D waste that were reported, including structure type and size, and the activity being performed. ## TABLE 2-5 AMOUNT OF CHEMICAL CONSTITUENTS IN WOOD PRODUCTS (Source: ERL, 1992) | l | T | | 1 | |--|---|---|------| | Wood Product | Chemical Constituent | Amount of
Chemical(s) in Wood
Product | Note | | pallets and skids,
(hardwood/softwood) | pentachlorophenol
lindane dimethyl phthalate
copper-8-quinolinolate
copper naphthenate | < 10 ppm | a | | pallets, plywood | phenolic resins | 2-4% | a | | pallets, glued | epoxy | 2-4% | | | painted wood, lead-based paint | lead | 1400-20,000 ppm
(before 1950) | b | | painted wood, acrylic-based paint | acrylic acid, styrene, vinyl toluene, nitriles | <0.01% | | | painted wood, "metallic" pigments | aluminum powder, copper acetate,
phenyl mercuric acetate, zinc
chromate, titanium dioxide, copper
ferrocyanide | <0.01% | | | plywood, interior grade | urea formaldehyde (UF) resins | 2-4% | c | | plywood, exterior grade | phenol formaldehyde (PF) resins | 2-4% | c | | oriented strandboard | phenol formaldehyde resins, or
PF/isocyanate resins | 2-4% | | | waterboard
"Aspenite" | urea formaldehyde resins or phenolic resins | 5-15% UF
2.5% PF, 2% wax | d | | overlay panels | phenol formaldehyde resins | 4-8%, sometimes up to 10% | | | plywood/PVC laminate | urea formaldehyde
polyvinyl chloride | 2.5% UF
10% PVC | | | particleboard | urea formaldehyde resins | 5-15% UF | d | | particleboard with PVC laminate | UF resins with polyvinyl chloride | 4.5% UF
10% PVC | | | hardboard | phenolic resins | 1.5% | | | fencing and decks: pressure treated southern pine | CCA or ACA | 1-3% | e | | fencing and decks: surface treated | CCA or ACA | 1-3% | e | | utility poles, laminated beams,
freshwater pilings, bridge timbers,
decking, fencing | pentachlorophenol | 1.2-1.5% | f | | Wood Product | Chemical Constituent | Amount of
Chemical(s) in Wood
Product | Note | |------------------------------|------------------------------|---|------| | railroad ties, utility poles | creosote containing 85% PAHs | 14-20% | g | | freshwater pilings, docks | creosote - coal tar | 15-20% | | | marine pilings, docks | creosote/chlorpyrifos | 15-20% | | - a Hardwood pallets are used primarily in the eastern U.S.; softwood and plywood pallets are used primarily in the western U.S. - b Lead level is highly dependent on the age of the paint; before 1950 lead comprised as much as 50% of the paint film. Legislation in 1976 reduced standard to 0.06% by weight. - c Plywood may be surface-coated with fire retardants, preservatives and insecticides, or pressure-treated with CCA. - d May be sealed with polyurethane or other sealant to prevent offgassing of formaldehyde. - e Dominant wood preservative; actual levels will be lower due to evaporation or leaching after treatment. - f Restricted use due to industry change and concern over dioxin linkage; not permitted for residential uses. - g Losses after treatment estimated to be 20-50% over 10-25 years; not recommended for residential use. Overall, C&D waste streams are comprised mainly of wood products, asphalt, drywall, and masonry. Other notable components include metals, plastics, earth, shingles, and insulation. Most of the source documents did not provide information on the percentage of C&D waste that is "hazardous." Those that did indicated that "hazardous" waste comprised a small percentage of the total C&D waste stream (e.g., 0.4 percent of construction waste in one county in North Carolina). The source documents did not define "hazardous" or other "problematic" wastes as wastes that are classified as hazardous under RCRA Subtitle C. The source documents did note that although C&D wastes have traditionally been considered inert and harmless, they have become an issue of concern in the 1990s. This is largely because some C&D wastes that were previously considered harmless are now considered to be "toxic" or to contain "hazardous" materials, such as wood that is coated with lead
paint (Piasecki et al., 1990; Lambert and Domizio, 1993). "Problematic" wastes cited by three or more of the reports or articles in the source documents are: adhesives, caulk, paint, wood preservatives, formaldehyde resins, stains and varnishes, appliances, batteries, mercury-containing switches and lights, PCB-containing transformers and capacitors. Again, these "problematic" wastes may or may not qualify as hazardous wastes under RCRA Subtitle C. More attention has also focused on C&D landfills because they may be used to dump hazardous wastes illegally (Piasecki et al., 1990; Lambert and Domizio, 1993). #### REFERENCES Hanrahan, Pegeen. Construction and Demolition Debris Disposal Issues: An Alachua County Perspective. Alachua County Environmental Protection Department. May 1994. Lambert, Geri, and Domizio, Linda. *Construction and Demolition Waste Disposal: Management Problems and Alternative Solutions*. Massachusetts Department of Environmental Protection. February 1993. National Association of Demolition Contractors. *C&D Waste Characterization Database: Volume 1 - Compilation of Report Excerpts*. Prepared by Gershman, Brickner & Bratton, Inc. Falls Church, VA. February 18, 1994. Includes excerpts from the following reports: Davidson, Thomas A. (Massachusetts Institute of Technology). *Workshop on the Potential for Recycling Demolition Debris*. Prepared for the National Science Foundation. June 22, 1978. Wilson, David G., Davidson, Thomas A., and Ng, Herbert T.S. *Demolition Wastes: Data Collection and Separation Studies*. Prepared for the National Science Foundation. December 1979. Thomé-Kozmiensky, Karl J. (EF-Verlag für Energie- und Umwelttechnik GmbH). *Recycling International* (Volume 3). 1986. Piasecki, Bruce W., Ray, Joel, and Golden, Patrick (American Hazard Control Group). *Managing Construction and Demolition Debris: Trends, Problems and Answers*. Prepared for the Associate Building Contractors of the Triple Cities, Inc. and General Building Contractors of New York State. March 1990. C.T. Donovan Associates, Inc. (Burlington, Vermont). *Recycling Construction and Demolition Waste in Vermont: Final Report.* Prepared for the Vermont Agency of Natural Resources, Recycling and Resource Conservation Section, Waterbury, Vermont. December 1990. SPARK Construction Waste Sub-Committee of the Science Council of British Columbia. *Construction Waste Management Report*. Prepared for the Construction Sector Committee of the Science Council's Strategic Planning for Applied Research Knowledge in conjunction with the National Research Council's Industrial Research Assistance Program. January 1991. Greater Toronto Home Builders' Association (THBA). Making a Molehill out of a Mountain II. June 1991. Donohue/JRP Asia Pacific Ltd. (in association with Gershman, Brickner & Bratton, Inc.). *Study on Recycling of Construction Waste Received at Landfills: Final Report.* Prepared for the Hong Kong Government Environmental Protection Department. September 1991. Federle, Mark O. (Department of Civil and Construction Engineering). *Analysis of Building Construction Recycling Efforts in Iowa*. Prepared for the Engineering Research Institute at Iowa State University. 1992. European Demolition Association (The Netherlands). Demolition and Construction Debris. Circa 1992. Mac Viro Consultants, Inc. (Ontario). *Preliminary Study of Construction and Demolition Waste Diversion Constraints and Opportunities*. Prepared for the Ontario Ministry of the Environment. March 1992. Environmental Risk Limited (ERL). Wood Products in the Waste Stream Characterization and Combustion Emissions: Volume 1. November 1992. C.T. Donovan Associates, Inc. *Recycling Construction and Demolition Waste in Rhode Island*. Prepared for Rhode Island Governor's Office of Housing, Energy and Intergovernmental Relations. December 1992. Cosper, Stephen D., Hallenbeck, William H., Brenniman, Gary R. *Construction and Demolition Waste: Generation, Regulation, Practices, Processing, and Policies*. Prepared for the Illinois Department of Energy and Natural Resources. January 1993. Lauer, Pamela W. (Innovative Waste Management). *Construction Materials Recycling Guidebook*. Prepared for the Metropolitan Council of the Twin Cities Area. March 1993. Gates, Betsy, Latham, Cathy, Nelson, Wayne, and Washington, Darrell. *Non-Mixed Municipal Solid Waste Composition and Volume Metropolitan Area 1990-1991*. Prepared for the Minnesota Pollution Control Agency Metropolitan Council. Spring 1993. O'Brien & Associates/Palermini & Associates. Residential Remodeling Waste Reduction Demonstration Project. June 1993. Triangle J Council of Governments. *Construction and Demolition Debris Reduction and Recycling: A Regional Approach*. Prepared for the Office of Waste Reduction, North Carolina Department of Environment, Health, and Natural Resources. June 1993. Palermini & Associates (Portland, Oregon). *Construction Industry Recycling Project: Final Report*. Prepared for the Portland METRO Solid Waste Department. July 1993. McGregor, Mark, Washburn, Howard, and Palermini, Debbi. *Characterization of Construction Site Waste*. Presented to the Portland METRO Solid Waste Department. July 1993. Gershman, Brickner & Bratton, Inc. (Falls Church, Virginia). What's in a Building? *Demolition Age*. October 1993. National Association of Demolition Contractors. *C&D Waste Characterization Database: Volume 1 - Compilation of Articles*. Prepared by Gershman, Brickner & Bratton, Inc. Falls Church, VA. February 18, 1994. Includes the following articles: Spencer, Robert. Recycling Opportunities for Demolition Debris. *Biocycle*. November 1989. Apotheker, Steve. Construction and Demolition Debris -- The Invisible Waste Stream. *Resource Recycling*. December 1990. Spencer, Robert. Taking Control of C&D Debris. Biocycle. July 1991. Lambert, Geri (Massachusetts Department of Environmental Protection). *Construction and Demolition Waste Disposal: Management Problems and Alternative Solutions*. Prepared for the Northeast Waste Management Official's Association. October 1991. Woods, Randy. C&D Debris: A Crisis is Building. Waste Age. January 1992. Rebeiz, K.S. Recycling Plastics in the Construction Industry. Waste Age. February 1992. Lee, Benjamin. New-Style MRFs Recycling Construction and Demolition Waste. *Solid Waste & Power*. October 1992. Schlauder, Richard M., and Brickner, Robert H. (Gershman, Brickner & Bratton, Inc.). Setting Up for Recovery of Construction and Demolition Waste. *Solid Waste & Power*. January/February 1993. #### CHAPTER 3 LEACHATE QUALITY ANALYSIS This chapter summarizes available information on construction and demolition (C&D) debris landfill leachate. The methodology is discussed first, followed by the results of the analysis. #### **METHODOLOGY** This analysis is based on construction and demolition debris landfill leachate sampling data presented in two documents assembled by Gershman, Brickner & Bratton, Inc. (GBB) for the National Association of Demolition Contractors (NADC). One document, "C&D Waste Landfills, Leachate Quality Data, Volume 1, Specific State-by-State Responses," presents the results of GBB's efforts to obtain leachate data from state officials. The second document, "C&D Waste Landfills, Leachate Quality Data, Volume 2, Copies of Reports, Articles, and Other Related Data," is a compilation of several reports germane to C&D landfill leachate quality. In addition to the information compiled by NADC, other studies of C&D debris landfill leachate have been performed. Selected studies are reviewed, and the results compared to this study, in Attachment 3-A. The methodology for using NADC's data as a basis for characterizing C&D landfill leachate quality comprised the following steps: - Selecting C&D landfills to include in the analysis; - Developing a C&D landfill leachate database; - Compiling parameter-specific regulatory and health-based "benchmarks" to use as a basis for screening potential risks; - Screening out parameters that were never detected in C&D landfill leachate, or that never exceeded the benchmark: - Calculating median values (using only detected values) for each parameter detected at a concentration above the benchmark; and - Calculating the ratio of the parameters' median concentrations to the benchmarks. Each step is discussed below. #### Selecting C&D Landfills The two reports prepared for NADC by GBB present leachate sampling data for numerous landfills in many states. While much of the information is landfill-specific, some is presented in different formats such as average parameter concentrations across landfills in a given state, or as ranges of concentrations across groups of landfills. To develop the leachate database for this report, only landfill-specific sampling data were used. Thus, this report is based on leachate sampling data for 21 C&D landfills, listed in Table 3-1. For ease in reviewing the database in Attachment 3-B, the abbreviated database code for each landfill is also presented in Table 3-1. TABLE 3-1 LANDFILLS FROM WHICH LEACHATE DATA WERE EXTRACTED FOR ANALYSIS | Landfill Name | Database Reference | |--|--------------------| | CDI, Colorado | СО | | Deep River Bulky Waste Landfill, Connecticut | CT-1 | | Guilford Bulky Waste Landfill, Connecticut | CT-2 | | Groton Bulky Waste Landfill, Connecticut | CT-3 | | Glastonbury Bulky Waste Landfill, Connecticut | CT-4 | | ITI Trucking Terminal site, Connecticut | CT-5 | | D & M site, Connecticut | CT-6 | | Armetta Property, Connecticut | CT-7 | | Iowa #4 site, Iowa | IA-1 | | Iowa #5 site, Iowa | IA-2 | | Brandywine/Cross Trails Rubble Landfill, Maryland | MD | | Unnamed Kentucky site from 1991 WMNA study, Kentucky | KY | | Unnamed Massachusetts site from 1991 WMNA study, Massachusetts | MA | | Unnamed Michigan site from 1991 WMNA study, Michigan | MI | | SKB Rich Valley Waste Management Facility, Minnesota | MN |
 110 Sand & Gravel site, New York | NY-1 | | Blydenburg Cleanfill, New York | NY-2 | | South Carolina Landfill #1, South Carolina | SC | | Sanifill, Inc. site (high in 3-site range), Texas | тх ні | | Sanifill, Inc. site (low in 3-site range), Texas | TX LO | | Mt. Olivet Landfill, Washington | WA | #### Developing a C&D Landfill Leachate Database Leachate sampling data for the 21 landfills were entered into a database, Attachment 3-B. The database contains sampling data for a total of 305 parameters analyzed for at least once. A blank entry in the database indicates that the parameter was not sampled for at that landfill. In many cases, a parameter was sampled for but not detected at a landfill. Non-detects were handled in one of two ways: - If a detection limit (say, "X") was given by GBB, "<X" was entered in the database. - If no detection limit was given, "ND" was entered in the database. As data were taken from many different landfills (and thus many different sampling laboratories), there were cases in which different names were used to address the same parameter. The differing nomenclatures used by different landfills were reconciled so that all synonyms were joined into one parameter row. In addition, some samples were identified as "total" and others as "dissolved." To be conservative, the "total" values were entered into the database. #### **Compiling Regulatory and Health-based Benchmarks** The next step was to identify parameter-specific benchmarks, or concern levels, to use as a basis for determining whether the parameter concentrations in leachate are high enough to pose potential risk. Safe Drinking Water Act National Primary and Secondary Drinking Water Standards were used as the benchmarks if these were available; these are referred to in the remainder of this report as Maximum Contaminant Levels (MCLs) or Secondary Maximum Contaminant Levels (SMCLs). Both are enforceable drinking water standards. While MCLs are health-based, SMCLs are based on other factors such as aesthetics. Both MCLs and SMCLs are also based on the availability of treatment technologies and other factors such as availability of data and analytical methods. For parameters without MCLs or SMCLs, health-based benchmarks for a leachate ingestion scenario were compiled as follows: - Reference doses (RfDs) were compiled for non-carcinogens. EPA calculates RfDs by dividing animal toxicity values by suitable scaling or uncertainty and modifying factors. The RfDs used in this study were taken from EPA's Integrated Risk Information System (IRIS) or Health Effects Assessment Summary Tables (HEAST). The RfDs (mg/kg-day) were then converted to benchmark concentrations in drinking water using EPA's standard exposure assumptions (daily intake of two liters per day, average body weight of 70 kg, and exposure duration of 365 days per year over 70 years). - Risk-specific doses (RSDs) were calculated for carcinogens based on cancer slope factors (CSFs). A CSF is a measure of the carcinogenic potency of low doses of carcinogens. CSFs represent the upper-bound confidence limit estimate of the excess cancer risk for individuals experiencing a given exposure over a lifetime. EPA calculates CSFs from dose-response curves, which are based on human epidemiological and/or animal bioassay data. For this study, CSFs given in IRIS or HEAST were used, and the standard exposure assumptions listed above, to calculate the drinking water concentration that would correspond to an excess lifetime cancer risk of 10⁻⁶. Many of the parameters detected in C&D landfill leachate have not been studied sufficiently to allow an RfD or a CSF to be developed. For these parameters, no benchmarks were available for this study. #### **Screening Out Parameters** In this step, the maximum observed value of each parameter was simply compared to its regulatory or health-based benchmark. Parameters that were never observed in C&D landfill leachate at levels above their respective benchmarks were screened out, the rationale being that if the undiluted leachate is "safe to drink," no further analysis is needed. Also excluded from further consideration were parameters that were sampled for but never detected in landfill leachate. #### **Calculating Median Leachate Concentrations** For each parameter with at least one exceedance over the benchmark, the median leachate concentration was calculated across all landfills at which the parameter was sampled. Medians, rather than averages, were calculated in order to reduce the effect of single, anomalous values. ⁸Where available, existing MCLs or SMCLs were used; otherwise, proposed values were used. When calculating the median value for each parameter, the median value for each landfill was first calculated, and then the median value across all landfills was calculated. For example, if parameter X was sampled once at Landfill A, once at Landfill B, and six times or at six locations at Landfill C, the median concentration was calculated based on the Landfill A sample, the Landfill B sample, and the median among the Landfill C samples. Thus, each landfill is represented only once for each parameter, and each landfill is weighted equally. Due to anomalies and inconsistencies among the sampling equipment used at different times and at different landfills, non-detects were not considered in determining median values. In other words, for those parameters for which a median was calculated, the non-detects were discarded before calculating both individual landfill concentration medians and medians across all landfills. Thus, the median leachate concentrations calculated for this analysis represent the median among the detected values, rather than the median among all values. The median concentration among all values would in most cases have been lower than those calculated here. #### **Comparing Medians to Benchmarks** The median value for each parameter was then compared to the benchmark for that parameter, if one was available. The results are expressed as the ratio of the median leachate concentration to the benchmark. #### RESULTS As discussed above, the leachate database contains sampling data for 305 parameters analyzed for at one or more of 21 construction and demolition landfills. Of these 305 parameters, 93 were detected at least once. The other 212 parameters, almost all organics, were never detected, and are listed in Table 3-2; many of them were sampled for at only one or two landfills, and often only once or twice at those sites. All 93 parameters that were detected at least once are listed in Table 3-3, along with the number of landfills at which the parameter was sampled, the number of landfills at which the parameter was detected, the maximum and minimum values for each parameter (here, including non-detects), and the relevant benchmark, if available. Maximum concentrations above the benchmark are shaded. For pH, the minimum pH level below the benchmark range is shaded. Table 3-4 focuses on the parameters whose maximum concentrations exceeded their benchmarks (i.e., the parameters shaded in Table 3-3). For each parameter, Table 3-4 repeats the number of landfills at which the parameter was sampled and detected, but also shows the number of landfills at which the benchmark was exceeded. Table 3-4 also provides the median value of each parameter across all landfills, each parameter's benchmark, and the ratio of the medians to benchmarks. Again, due to anomalies and inconsistencies among sampling equipment, non-detects were not considered in determining median values. The results are discussed below. ## TABLE 3-2 PARAMETERS ANALYZED FOR BUT NEVER DETECTED | ORGANICS | | | | |-------------------------------------|--------------------------------|------------------------------------|--------------------------------| | Acetonitrile | m-Cresol | Endosulfan II | N'Nitroso-di-n-propylamine | | Acetophenone | Cumene | Endrin | N-Nitrosomorpholine | | 2-Acetylaminofluorene | 2,4-D | Endrin aldehyde | N-Nitrosopiperidine | | Acrolein | 4,4-DDD | Endrin ketone | N'Nitrosopyrolidine | | Acrylonitrile | 4,4-DDE | Ethyl ether | 5-Nitro-o-toluidine | | Aldrin | 4,4,4-DDT | Ethylmethacrylate | PeCDD | | alpha-Chlordane | delta-BHC | Ethyl methane sulfonate | PeCDF | | alpha-Endosulfan | Diallate | Ethyl parathion | Pentachlorobenzene | | 4-Aminobiphenyl | Dibenzo(a,h)anthracene | Famphur | Pentachloronitrobenzene | | Aniline | Dibenzofuran | Fluoranthene | Pentachlorophenol | | Anthracene | Dibromochloromethane | Fluorene | Pentachlorothane | | Aramite | 1,2-Dibromo-d-chloropropane | Heptachlor | Phenacetin | | Aroclor/PCB 1016 | Dibromomethane | Heptachlor epoxide | Phenanthrene | | Aroclor/PCB 1221 | 1,2-Dibromoethane | Hexachlorobenzene | Phenolphthalein Alkalinity | | Aroclor/PCB 1232 | Di-a-butyl phthalate | Hexachlorobutadiene | p-Phenylemediamine | | Aroclor/PCB 1242 | Dichloroacetonitrile | Hexachlorocyclopentadiene | Phorate | | Aroclor/PCB 1248 | 1,2-Dichlorobenzene | Hexachloroethane | 2-Picoline | | Aroclor/PCB 1254 | 1,3-Dichlorobenzene | Hexachlorophene | Pronamide | | Aroclor/PCB 1260 | 1,4-Dichlorobenzene | Hexachloropropene | Propionitrile, Ethyl cyanide | | Benzo-a-anthracene | 3-3-Dichlorobenzidine | Hx-CDD | Pyrene | | Benzo-a-pyrene | trans-1,4-Dichloro-2-butene | HxCDF | Pyridine | | Benzo-b-fluoranthene | Dichlorodifluoromethane | Indeno(1,2,3-cd)pyrene | Safrole | | Benzo(k)fluoranthene | 1,2-Dichloroethene | lodomethane | Silvex, 2,4,5-TP | | Benzo-g,h-perylene | 1,1-Dichloroethene | Isobutanol | Sulfotepp | | Benzo-g,h,i-perylene | Dichlorofluoromethane | Isodrin | TCDD | | Benzo-k-perylene | 2,4-Dichlorophenol | Isophorone | 2,3,7,8-TCDD | | Benzyl alcohol | 2,6-Dichlorophenol | 2-Isophorone | TCDF | | beta-BHC | trans-1,2-Dichloropropane | Isosafrole | 1,2,4,5-Tetrachlorobenzene | | beta-Endosulfan | 1,2-Dichloropropane | Kepone | 1,1,1,2-Tetrachloroethane | | Bis(2-chloroethoxy)methane | 1,3-Dichloropropane |
Lindane | 1,1,2,2-Tetrachloroethane | | Bis(2-chloroethyl)ether | 2,2-Dichloropropane | Methacryonitrile | 2,3,4,6-Tetrachlorophenol | | Bis(2-chloroisopropyl)ether | trans-1,3-Dichloropropene | Methapyrilene | Tetrahydrofuran | | Bis(2-chloro-1-methyl)ether | 1,1-Dichloropropene | Methoxychlor | Thionazin | | Bis(2-ethylhexyl)phthalate | 2,3-Dichloro-1-propene | 3-Methylchloanthrene | o-Toluidine | | Bromodichloromethane | cis-1,3-Dichloropropene | Methyl methacrylate | Toxaphene | | Bromoform | p-(Dimethylamino)azobenzene | Methyl methane sulfonate | 1,2,4-Trichlorobenzene | | Bromomethane | Dimethaote | 2-Methylnaphthalene | 1,1,1-Trichloroethane | | 4-Bromophenyl-phenylether | 7/12-Dimethylbenz(a)anthracene | Methyl parathion; Parathion mehtyl | 1,1,2-Trichloroethane | | Butyl benzyl phthalate | 3,3-Dimethylbenzidine | (3&4)-Methylphenol | 2,4,5-Trichlorophenol | | Carbon tetrachloride | Dimethylphenethylamine | 1,4-Naphthoquinone | 2,4,6-Trichlorophenol | | Carbonate | 2,4-Dimethylphenol | 1-Naphthylamine | 1,2,3-Trichloropropane | | Chlordane | Dimethyl phthalate | 2-Naphthylamine | 1,1,2-Trichlorotrifluoroethane | | 4-Chloroaniline | 1,3-Dinitrobenzene | 2-Nitroaniline | o,o,o-Triethyl phosphorothiole | | Chlorobenzene | 4,6-Dinitro-2-methylphenol | 3-Nitroaniline | sym-Trinitrobenzene | | Chlorobenzilate | 2,4-Dinitrophenol | 4-Nitroaniline | Vinyl acetate | | 2-Chloro-1,3-butadiene, Chloroprene | 2,4-Dinitrotoluene | Nitrobenzene | Vinyl chloride | | Chlorodibromomethane | 2,6-Dinitrotoluene | o-Nitrophenol | INORGANICS | | 2-Chloroethyl Vinyl Ether | Dinoseb, DNBP | p-Nitrophenol | Antimony | | 4-Chloro-3-methylphenol | Di-a-octyl phthalate | 4-Nitroquininoline-1-oxide | Thallium | | 4-Chlorophenyl phenyl ether | Di-n-octyl phthalate | N-Nitrosodi-a-butylamine | Tin | | 2-Chloronaphthalene | 1,4-Diomene | N-Nitrosodiethylamine | CONVENTIONAL PARAMETER | | 2-Chlorophenol | Diphenylamine | N-Nitrosodimethylamine | Total Settled Solids | | 3-Chloropropene, Allyl Chloride | Endosulfan sulfate | N-Nitrosodimethylethylamine | . Stat. Cottlod Collad | | 5 55roproporto, Allyr Orlionae | Endosulfan I | | | ## TABLE 3-3 FREQUENCY OF DETECTION, RANGE, AND BENCHMARK FOR DETECTED PARAMETERS (Concentrations in ug/l) | | | | | | BENCHMARK | | |--|------------------------|-------------------------|---------|---------|-----------|--------------| | PARAMETER | # LANDFILLS
SAMPLED | # LANDFILLS
DETECTED | MAXIMUM | MINIMUM | VALUE | SOURCE | | ORGANICS | | | | | | | | Acenaphthene | 7 | 1 | 3 | ND | 2000 | RfD | | Acetone | 6 | 4 | 5100 | ND | 4000 | RfD | | alpha-BHC | 6 | 1 | 0.12 | ND | 0.006 | 10^-6
RSD | | Benzene | 9 | 2 | 2.7 | ND | 5 | MCL | | Benzoic acid | 4 | 2 | 910 | ND | | | | Carbon disulfide | 5 | 2 | 15 | ND | 4000 | RfD | | Chloroethane | 9 | 2 | 353 | ND | | | | Chloroform | 9 | 1 | 3 | ND | 100 | MCL | | Chloromethane | 9 | 2 | 43 | ND | | | | cis-1,2-Dichloroethane | 2 | 1 | 1.4 | ND | | | | 1,2-Dichloroethane | 9 | 3 | 26 | ND | 5 | MCL | | 1,1-Dichloroethane | 9 | 3 | 6.2 | ND | 4000 | RfD | | 1,1-Dichloroethene | 9 | 1 | 3 | ND | 7 | MCL | | trans-1,2-Dichloroethene | 4 | 1 | 4 | ND | 100 | MCL | | Dieldrin | 6 | 1 | 0.065 | ND | 0.002 | 10^-6
RSD | | Diethyl phthalate | 7 | 1 | 16 | ND | 30000 | RfD | | Disulfoton | 3 | 1 | 0.96 | ND | 1 | RfD | | Di-n-butyl phthalate | 4 | 1 | 16 | ND | 4000 | RfD | | Ethylbenzene | 9 | 5 | 18 | ND | 700 | MCL | | 2-Hexanone (methyl butyl ketone) | 5 | 1 | 4.8 | ND | | | | Methyl ethyl ketone (MEK) | 6 | 2 | 2500 | ND | 20000 | RfD | | Methylene chloride | 9 | 3 | 60 | ND | 5 | MCL | | 2-Methylphenol (o-cresol) | 7 | 2 | 130 | ND | | | | 4-Methyl-2-pentanone | 6 | 2 | 250 | ND | | | | 4-Methylphenol (p-cresol) | 5 | 4 | 5700 | ND | | | | Naphthalene | 7 | 2 | 63 | ND | 1000 | RfD | | Phenol | 8 | 5 | 2990 | ND | 20000 | RfD | | Styrene | 5 | 1 | 1.1 | ND | 100 | MCL | | Tetrachloroethene | 9 | 1 | 4.8 | ND | 5 | MCL | | Toluene | 9 | 4 | 240 | ND | 1000 | MCL | | Trichloroethene | 9 | 3 | 20 | ND | 5 | MCL | | Trichlorofluoromethane | 5 | 2 | 20 | ND | 10000 | RfD | | 2.4.5-T. 2.4.5-Trichlorophenoxyacetic ac | | 2 | 0,53 | ND | 50 | MCL | ## TABLE 3-3 (cont.) FREQUENCY OF DETECTION, RANGE, AND BENCHMARK FOR DETECTED PARAMETERS (Concentrations in ug/l) | TABLE 3-3. FREQUENCY OF DETECTION, RANGE, AND BENCHMARK FOR DETECTED PARAMETERS (Concentrations in ug/l) | | | | | | | | |--|------------------------|-------------------------|---------|---------|-----------|-----------------|--| | | , | | | (| BENCHMARK | | | | PARAMETER | # LANDFILLS
SAMPLED | # LANDFILLS
DETECTED | MAXIMUM | MINIMUM | VALUE | SOURCE | | | Xylene (total) | 8 | 4 | 85 | ND | 10000 | MCL | | | INORGANICS | | | | | | | | | Aluminum | 1 | 1 | 6350 | ND | 50-200 | SMCL | | | Arsenic | 16 | 12 | 120 | ND | 50 | MCL | | | Barium | 13 | 13 | 8000 | ND | 2000 | MCL | | | Beryllium | 5 | 1 | 2.1 | ND | 4 | MCL | | | Boron | 2 | 2 | 3900 | 1400 | | | | | Cadmium | 19 | 14 | 2050 | ND | 5 | MCL | | | Chromium | 16 | 9 | 250 | ND | 100 | MCL | | | Hexavalent Chromium | 5 | 2 | 4920 | ND | | | | | Cobalt | 4 | 1 | 60.9 | ND | | | | | Copper | 18 | 14 | 620 | ND | 1000 | SMCL | | | Cyanide | 12 | 9 | 340 | ND | 200 | MCL | | | Cyanides (total) | 6 | 4 | 38 | ND | | | | | Iron | 20 | 20 | 172000 | ND | 300 | SMCL | | | Filtered Iron | 2 | 2 | 11000 | 240 | | | | | Lead | 18 | 15 | 2130 | ND | 15 | Action
Level | | | Magnesium | 7 | 7 | 460000 | ND | | | | | Mercury | 15 | 4 | 9 | ND | 2 | MCL | | | Nickel | 12 | 7 | 170 | ND | 100 | MCL | | | Potassium | 9 | 9 | 618000 | ND | | | | | Selenium | 14 | 1 | 5 | ND | 50 | MCL | | | Silver | 12 | 2 | 30 | ND | 100 | SMCL | | | Vanadium | 4 | 2 | 96 | ND | 200 | RfD | | | Zinc | 15 | 15 | 8630 | ND | 5000 | SMCL | | | CONVENTIONAL PARAMETERS | | | | | | | | | Alkalinity | 13 | 13 | 6520000 | ND | | | | | Ammonia | 3 | 3 | 480000 | ND | | | | | Ammonia, Nitrogen | 14 | 13 | 184000 | ND | | | | | Bicarbonate | 2 | 2 | 7950000 | 2090000 | | | | | Biological Oxygen Demand (BOD)
(5-day) | 14 | 13 | 320000 | ND | | | | | Biological Oxygen Demand (BOD) (20-day) | 5 | 5 | 83000 | 5000 | | | | | PARAMETER Calcium Chemical Oxygen Demand (COD) Chlorides Dissolved Oxygen (%) Fluoride Hardness by Calculation Manganese Nitrate Nitrate Nitrate/Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease Oxidation-Reduction Potential | # LANDFILLS | | | | BENCHMARK | | |--|-------------|-------------------------|----------|---------|-----------|--------| | Calcium Chemical Oxygen Demand (COD) Chlorides Dissolved Oxygen (%) Fluoride Hardness by Calculation Manganese Nitrate Nitrate Nitrate/Nitrite Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | SAMPLED | # LANDFILLS
DETECTED | MAXIMUM | MINIMUM | VALUE | SOURCE | | Chlorides Dissolved Oxygen (%) Fluoride Hardness by Calculation Manganese Nitrate Nitrate/Nitrite Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 7 | 7 | 600000 | ND | | | | Dissolved Oxygen (%) Fluoride Hardness by Calculation Manganese Nitrate Nitrate/Nitrite Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 18 | 17 | 11200000 | ND | | | | Fluoride Hardness by Calculation Manganese Nitrate Nitrate/Nitrite Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 20 | 20 | 2400000 | ND | 250000 | SMCL | | Hardness by Calculation Manganese Nitrate Nitrate/Nitrite Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 1 | 1 | 4.8 | 0.3 | | | | Manganese Nitrate Nitrate/Nitrite Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 3 | 2 | 5000 | ND | 2000 | SMCL | | Nitrate Nitrate/Nitrite Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 10 | 10 | 2420000 | 150000 | | | | Nitrate/Nitrite Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 14 | 14 | 258000 | ND | 50 | SMCL | | Nitrite Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 14 | 10 | 13000 | ND | 10000 | MCL | | Organic Nitrogen Total Kjeldahl Nitrogen Oil and Grease | 1 | 1 | 290 | 290 | 10000 | MCL | | Total Kjeldahl Nitrogen Oil and Grease | 10 | 6 | 47 | ND | 1000 | MCL | | Oil and Grease | 7 | 7 | 11000 | 70 | | | | | 3 | 3 | 300000 | 3730 | | | | Oxidation-Reduction Potential | 7 | 6 | 50000 | ND | | | | | 2 | 2 | 580 | ND | | | | рН | 18 | 18 | 8 | 6.2 | 6.5-8.5 | SMCL | | Total Phenolics | 4 | 3 | 4900 | ND | | | | Phosphate | 2 | 1 | 3900 | ND | | | | Phosphorus | 5 | 4 | 3890 | ND | | | | Total Phosphorus | 3 | 3 | 1600 | 100 | | | | Sodium | 12 | 12 | 1510000 | ND | | | | Solids, volatile | 2 | 2 | 380000 | 170000 | | | | Specific Conductance (h) | 12 | 12 | 25000 | 220 | | | | Sulfates | 16 | 14 | 2700000 | ND | 250000 | SMCL | | Surfactants | 1 | 1 | 1100 | ND | | | | Tannin | 1 | 1 | 120000 | 120000 | | | | Total Dissolved Solids | 18 | 17 | 8400000 | ND | 500000 | SMCL | | Total Organic Carbon | | | | | | | | Total Organic Halogens | 7 | 7 | 1080000 | ND | | | | Total Suspended Solids | | 3 | 1080000 | 740 | | | ND = Not Detected RfD = Reference Dose 10^-6 RSD = 10^-6 Risk-specific Dose #### TABLE 3-4 FREQUENCY OF DETECTION ABOVE BENCHMARK AND COMPARISON OF MEDIANS TO BENCHMARKS (Concentrations in ug/l) | PARAMETER | # LANDFILLS | # LANDFILLS | # LANDFILLS | MEDIAN* | BENCHMARK | | MEDIAN/ | |--------------------|-------------|-------------|-------------|---------|-----------|--------|---------------| | | SAMPLED | DETECTED | > BENCHMARK | | VALUE | SOURC | BENCHMARK | | ORGANICS | | | | | | | | | Acetone | 6 | 4 | 1 | 230 | 4000 | RfD | 0.058 | | alpha-BHC |
6 | 1 | 1 | 0.12 | 0.006 | 10^-6 | 20 | | 1,2-Dichloroethane | 9 | 3 | 3 | 19 | 5 | MCL | 3.8 | | Dieldrin | 6 | 1 | 1 | 0.065 | 0.002 | 10^-6 | 33 | | Methylene chloride | 9 | 4 | 3 | 15.2 | 5 | MCL | 3 | | Trichloroethene | 9 | 3 | 1 | 3.2 | 5 | MCL | 0.6 | | INORGANICS | | | | | | | | | Aluminum | 1 | 1 | 1 | 245 | 50-200 | SMCL | 4.9 (1.2 Min) | | Arsenic | 16 | 12 | 3 | 19.5 | 50 | MCL | 0.39 | | Barium | 13 | 13 | 1 | 340 | 2000 | MCL | 0.17 | | Cadmium | 19 | 14 | 12 | 10.5 | 5 | MCL | 2.1 | | Chromium | 16 | 9 | 3 | 45 | 100 | MCL | 0.45 | | Cyanide | 12 | 9 | 2 | 24.5 | 200 | MCL | 0.12 | | Iron | 20 | 20 | 19 | 11003 | 300 | SMCL | 37 | | Lead | 18 | 15 | 13 | 55 | 15 | Action | 3.7 | | Mercury | 15 | 4 | 1 | 0.5 | 2 | MCL | 0.25 | | Nickel | 12 | 7 | 2 | 50 | 100 | MCL | 0.5 | | Zinc | 15 | 15 | 1 | 135 | 5000 | SMCL | 0.027 | | CONVENTIONAL | | | | | | | | | Chlorides | 20 | 20 | 4 | 110000 | 250000 | SMCL | 0.44 | | Fluoride | 3 | 2 | 1 | 2700 | 2000 | SMCL | 1.4 | | Manganese | 14 | 14 | 13 | 2925 | 50 | SMCL | 59 | | Nitrate | 14 | 10 | 1 | 520 | 10000 | MCL | 0.052 | | Sulfates | 16 | 14 | 6 | 119000 | 250000 | SMCL | 0.48 | | Total Dissolved | 18 | 17 | 15 | 1770000 | 500000 | SMCL | 3.5 | ^{*} Medians of detected values only #### **Organics** The frequency of detection of organics was generally low compared to metals and conventional parameters. Of the 34 organics listed in Table 3-3, only 8 were detected at half or more of the landfills at which they were sampled: acetone, benzoic acid, cis-1,2-dichloroethane, ethylbenzene, 4-methylphenol, phenol, 2,4,5-T, and xylenes. Six organics exceeded their respective benchmarks at least once, including acetone, alpha-BHC, 1,2-dichloroethane, dieldrin, methylene chloride, and trichloroethene. Of the six organic constituents found above their benchmarks, Table 3-4 shows that four (acetone, alpha-BHC, dieldrin, and trichloroethene) were detected above their benchmarks at only one landfill. While this is noteworthy, these constituents are not subject to further assessment here because their exceedances cannot be considered representative. The median leachate concentrations (among the detected values) of both of the remaining constituents -- 1,2-dichloroethane and methylene chloride -- exceed their benchmarks. Neither of them exceeds its benchmark by a factor of 10 or more, however. Assuming that a 100-fold reduction in concentration is achieved between the leachate and a downgradient drinking water well (as would be likely, based on the dilution attenuation factor [DAF] of 100 developed for the Toxicity Characteristic rulemaking), the concentrations would fall well below the benchmarks at the point of exposure. Even if a smaller DAF of 10 is applied (as may be applicable at a monitoring well located closer to the landfill), neither constituent would exceed its benchmark. Again, these medians only account for detected values. Had the non-detects been included, the median concentrations of all but one of the organics would have been in the non-detect range. #### **Inorganics** Most of the inorganics listed in Table 3-3 were detected at half or more of the landfills at which they were sampled: aluminum, arsenic, barium, boron, cadmium, chromium, copper, cyanide, iron, lead, magnesium, nickel, potassium, vanadium, and zinc. The 11 constituents exceeding their benchmarks included aluminum, arsenic, barium, cadmium, chromium, cyanide, iron, lead, mercury, nickel, and zinc. As shown in Table 3-4, seven inorganics were detected above their benchmarks at more than one landfill: arsenic, cadmium, chromium, cyanide, iron, lead, and nickel. The median leachate concentrations exceed the benchmarks for only three of these inorganics, however: cadmium, iron, and lead. None of the median leachate concentrations exceeds its benchmark by a factor of 100 or more, and iron is the only constituent whose median exceeds its benchmark by a factor greater than 10. Iron was detected at all 20 landfills at which it was sampled, and was detected above its benchmark at least once at 19 of them. Excluding the few non-detects, the median concentration of iron in leachate is 37 times higher than its drinking water standard, which is a secondary MCL based on taste. #### **Conventional Parameters** As would be expected, all of the conventional parameters were detected at most, and often all, of the sites at which they were analyzed. The conventional parameters with maximum concentrations exceeding their respective benchmarks included chlorides, fluoride, manganese, nitrate, sulfates, and total dissolved solids (TDS). Only chlorides, manganese, sulfates, and TDS exceeded their benchmarks at more than one landfill. Of these four parameters, only manganese and TDS have medians above the benchmark. The median level of manganese exceeds its SMCL (by 59 times), while the median level of TDS exceeds its SMCL by over three times. In addition to these parameters, more than one landfill had a measured pH value outside of the range of the SMCL for pH. #### **SUMMARY** Leachate sampling data for 305 parameters sampled for at one or more of 21 C&D landfills were compiled into a database, shown in Attachment 3-B. Of these 305 parameters, 93 were detected at least once. Almost all of the 212 parameters that were never detected were organics; most of the inorganic and conventional parameters sampled for were detected one or more times. Of the 93 parameters detected in C&D landfill leachate, 24 had at least one measured value above the regulatory or health-based benchmark. For each of the parameters exceeding benchmarks (except pH), the median leachate concentration was calculated and compared to its benchmark. Due to anomalies and inconsistencies among the sampling equipment used at different times and at different landfills, non-detects were not considered in determining median values. Thus, the median leachate concentrations represent the medians among the detected values, rather than the median among all values. The median concentrations among all values would in most cases have been lower than those calculated here. Based on (1) the number of landfills at which the benchmark was exceeded and (2) a comparison between the median detected concentration and the benchmark, seven parameters emerge as being potentially problematic. The list of these seven parameters, shown below, was developed by eliminating from the original list of 24 parameters (1) any parameter that was detected at only one landfill (this was determined to be not representative) and (2) any parameter whose median leachate concentration did not exceed its benchmark. #### organics - 1,2-dichloroethane - · methylene chloride #### inorganics - · cadmium - iron - · lead #### conventional parameters - manganese - total dissolved solids (TDS) For three of the seven parameters listed above (iron, manganese, and TDS), the benchmarks are secondary MCLs (SMCLs), which are set to protect water supplies for aesthetic reasons (e.g., taste) rather than for health-based reasons. None of the remaining four parameters exceeds its benchmark by a factor of 10 or more, indicating that concentrations in ground water where ground-water monitoring or drinking water wells may be located are likely to fall below the health-based benchmarks. #### **CAVEATS AND LIMITATIONS** All conclusions made from the data presented in this report should be tempered by the following weaknesses in the samples used to calculate some of the leachate characteristics: - First, the sample size is much smaller than the universe of C&D landfills nationwide. The 21 landfills represented in this report comprise just over one percent of the approximately 1,800 C&D landfills in the United States. Thus, the representativeness of the sample is questionable. - Many of the parameters discussed in this report were only sampled at one or two landfills, and such data cannot be considered representative of 1,800 landfills. ⁹In the case of pH, the "exceedances" were actually pH values <u>below</u> the regulatory range. - The medians calculated in this report do not account for non-detects. Although the medians would be more meaningful if the non-detects could be factored in, this report attempts to capture the impact of the non-detects by presenting both the frequency of detection and the frequency of detection above benchmarks. - Some landfills do not characterize (or give an incomplete characterization of) the waste at their sites. Thus, in some cases, the respondents' assertions that their landfills are comprised of C&D wastes is the only basis for including the landfill in the database. - The data relied upon were assembled recently by only one organization, using limited data gathering techniques. #### **REFERENCES** National Association of Demolition Contractors. *C&D Waste Landfills, Leachate Quality Data, Volume 1, Specific State-by-State Responses.* Prepared by Gershman, Brickner & Bratton, Inc. Falls Church, VA, February 18, 1994. 6National Association of Demolition Contractors. *C&D Waste Landfills, Leachate Quality Data, Volume 2, Copies of Reports, Articles, and Other Related Data.* Prepared by Gershman, Brickner & Bratton, Inc. Falls Church, VA, February 18, 1994. U.S. EPA. *Health Effects Assessment Summary Tables. Annual Update*. Environmental Criteria and Assessment Office, Office of Health and Environmental Assessment. Cincinnati, OH, 1992. OHEA ECAO-CIN-821. U.S. EPA. Integrated Risk Information System (IRIS). U.S. EPA. Summary of Data on Municipal Solid Waste Landfill Leachate Characteristics. Office of Solid Waste. Prepared by NUS Corporation. July 1988. ## ATTACHMENT 3-A OTHER STUDIES OF C&D LANDFILL LEACHATE ### ATTACHMENT 3-A OTHER STUDIES OF C&D LANDFILL LEACHATE This attachment summarizes the results of selected studies of C&D landfill leachate and compares them to the results of the analysis presented in Chapter 3 of this report (the "NADC/ICF analysis"). #### THE WMX
REPORT This section compares the results of the NADC/ICF analysis with those of the 1993 *Construction and Demolition* (*C&D*) *Landfill Leachate Characterization Study* published by WMX Technologies, Incorporated (the "WMX report"). The WMX report evaluated leachate from four landfills (in Kentucky, Michigan, Massachusetts, and Wisconsin) for all or part of a three-year period (1991 to 1993). Samples from the four landfills were analyzed for 219 organics, 19 inorganics, and 13 conventional parameters. The NADC/ICF analysis evaluated 21 landfills, including the 1991 results from WMX's Kentucky, Michigan, and Massachusetts landfills. Because the NADC/ICF analysis was based on data compiled from various studies, there were significant differences in the parameters sampled for at the 21 landfills. In total, the NADC/ICF analysis covered 242 organics, 26 inorganics, and 37 conventional parameters. As the remainder of this section will show, the results of the NADC/ICF analysis and the WMX report are quite similar. Below, the two studies are compared in terms of the following factors: - The number and percent of parameters detected; - · Parameters detected at concentrations exceeding regulatory and/or health-based benchmarks; and - Parameters that are potentially problematic (i.e., detected at more than one landfill <u>and</u> have median leachate concentrations above a benchmark). This information is summarized in Table 3A-1 and discussed in the remaining sections. #### **Organics** In both the NADC/ICF and WMX reports, the percent of organics detected in C&D leachate was low compared to inorganics and conventional parameters. In the NADC/ICF analysis, 14 percent of the organics sampled for were detected (34 out of 242), compared to 15 percent (33 of 219) in the WMX report. #### TABLE 3A-1 COMPARISON OF NADC/ICF AND WMX STUDIES^a | | 001/11111100 | 1, 01 1,112 0,101 111,2 ,,1111 01 02 120 | | |-----------|-----------------------|--|-------------------------------------| | | Number of newspectors | Domomotors with maximum concentrations | Donometers that are notantial | | | Number of parameters | Parameters with maximum concentrations | Parameters that are potentiall | | Parameter | detected/sampled | exceeding benchmarks | (ratio of median leachate concentra | | Type | | | | ¹⁰ Results from an Ohio landfill sampled in 1991 and included in an earlier WMX report were discarded because WMX later discovered that steel mill slag had been used in the leachate collection system and had contaminated the leachate. ¹¹ Although iron was categorized as a conventional parameter by the WMX report, it is counted here as an inorganic parameter to be consistent with the NADC/ICF analysis. ¹² This includes some double-counting of parameters because similar parameters were reported differently in different studies. For example, nitrate and nitrite were reported separately in one study but together in another study, so the ICF analysis counts three separate categories: nitrate, nitrite, and nitrate/nitrite.